
Kris Jordan / August 21, 2024

COMP423 - Lecture 1
Please seat at tables with at least 3 people, ideally 4!
Only use Zones ABCD.

Class Start Checklist

1. Sit at a table with 3 or 4 people

2. Place backpack in bag under your seat

3. Write names of your group in corresponding corners of a whiteboard and
place whiteboard in back brackets of table with names facing front of room

4. Have laptops put away to start class (when/if we need them, we'll get them
out). iPads/notebooks are fine!

What are the CS Experience Labs?
• Community Co-Lab for Coworking 

(Solo, Pairs, and Groups)

• Productivity Rooms for Office Hours and
Groups

• 3x Pairing Rooms - Two Seats & Monitor

• 2x Small Team Rooms - Five Seats

• 2x Large Team Rooms - Seven Seats

• Collaborate with student orgs & CS Careers

• Upcoming: Workshops, Community Nights

• csxl.unc.edu > Coworking!

Virtues of a Great Teammate
Think, Team, Share

• 1m - Think for one minute individually: what are the virtues of a great teammate?

• 4m - On a whiteboard, as a table, share and record VIRTUES of great teammates

• Don't filter, prune, or judge! This is brainstorming!

• Give everyone an opportunity to contribute.

• 3m - On a separate whiteboard, identify the top 5 most important virtues to your table.

Classwork Submission

• Select ONE table member to be the submitter on Gradescope

• They should take a selfie/group photo of your table holding up Top 5 Virtues

• Submit the assignment on Gradescope

• After submitting, add everyone else to the assignment on Gradescope

• Everyone else: confirm you can see the submission on Gradescope

Tools and Engineering
“We become what we behold. We shape our tools and then our tools shape us.” -Marshall McLuhan

• Learning to wield (and shape) tools as a Software Engineer is paramount 

• A Toolchain is the set of tools used in the sequence of designing, writing,
building, testing, and deploying code throughout the Software Development
Lifecycle (SDLC)

Planning Development +
TestingDesign Deployment

Tools for Software Engineering
• Operating System

• Command-line Interface

• Controls processes, file system

• Operates many tools

• Source Code Control (e.g. git)

• Integrated Development Environment (IDE) - e.g. VSCode

• Program text editor with syntax highlighting

• Language Server Protocol (LSP) system for checking types, code nav, etc.

• Debugger

• Programming Language Platforms

• Compiler / Transpiler (e.g. javac, tsc)

• Language Runtime System (e.g. java virtual matchine / node's v8)

• Test Systems and Frameworks

• Project Management Software

Group Exercise

• On your machines, open up a Terminal (or PowerShell / cmd.exe on Windows)

• Write down each team mate's versions (or "Error") when running: 

• git --version

• python3 --version

• node --version

Key Team Engineering Challenge: Environment Consistency
Combatting "But it Works on My Machine"

• ~ Pre-2000 - On-boarding involved installing environment directly to engineer machines (ideally
scripted and automated, but often manual steps)

• Real challenges in keeping everyone's machines on the same page

• ~ 2000 - 2015 - Virtual Machines

• Run complete operating systems virtually. Heavier weight, slower. Mutable state of VMs still
leads to challenges in developer consistency over time.

• ~ 2015 - 2020 - Emergence of Docker Containers in Development Flows

• Containers and Images offer immutability and lightweight/fast operations

• 2020 - Dev(elopment)Containers in Microsoft VSCode and Cloud IDEs (e.g. CodeSpaces)

• Entire IDE running in container for highly consistent environment.

• Can run entire IDE on-line and in-browser (e.g. GitHub CodeSpaces)

Development Containers are becoming a Standard
https://containers.dev/

• Pre-built containers with great tooling for most popular languages:

• https://github.com/devcontainers/images/tree/main/src

• Including: C++, Java, JavaScript, PHP, Python, Ruby, Rust, Go, TypeScript

• Organizations / Engineers can fully customize custom built containers with the
tooling they need

• Using this infrastructure, there is a very high degree of confidence in
consistency across developer machines!

https://github.com/devcontainers/images/tree/main/src

First DevContainer from Scratch
Requires Docker to be working (OK if it isn't! Work with partner.)
1. Be sure Docker Desktop is running

2. VSCode > Open Extensions > Confirm DevContainers by Microsoft is installed

3. File > Open Folder > New Folder (name it ts-container) > Open

4. New Directory named '.devcontainer'.

1. Inside directory: New File named 'devcontainer.json'

2. Save the contents found in the text to the right of this slide!

5. Open Command Palette and run "Dev Containers: Reopen in Container" (This will take a few minutes.)

6. Open a new Terminal and try running `node --version` and `git --version` and compare with your table.

 {
 "name": "ts-devcontainer-demo",
 "image": "mcr.microsoft.com/vscode/devcontainers/typescript-node"
 }

Starting a JavaScript REPL from the CLI
• From terminal, run a JavaScript REPL with: node

• console.log("Hello, world.")

• typeof(3)

• let f = (x) => x * 2;

• f(590)

• .exit

• The JavaScript Runtime is node.js (accessed via command node)

• The node.js runtime repackages Google's V8 JavaScript Engine for development
and server use. In a web browser, V8 is built into the client such as Chrome.

Managing Project Dependencies
• Typically bundled with node.js, the Node Package Manager is primarily a tool for

establishing, managing, and updating 3rd party dependencies a.k.a. packages

• Most (modern) language platforms have a preferred package manager! Streamlines the
process of installing extra libraries your project needs.

• Examples of commonly used JavaScript packages:

• Front-end / Back-end Frameworks

• Testing Frameworks

• Linting Tools (Automatic code tidying)

• 3.1 million (!) open source packages hosted on npmjs.com

• The npm CLI Program also has support for starting projects, running project tasks (start
program, run tests, build for production, etc.), security checks, and more: npm help

http://npmjs.com

Starting a JavaScript Project with npm
1. To start a new project, in the DevContainer terminal: npm init

• There are a few questions you are asked, read each but just press [Enter] until you
are brought back to the command-line prompt starting with `node`

2. A file produced is called package.json (JSON: JavaScript Object Notation)

• The file encodes an "anonymous object" that specifies project properties

3. In package.json, we'll use a more modern module system by adding the following line
after the "version" line (don't forget : "type": "module",

4. In the "scripts" object, add a line (don't forget the ,) "start": "node index.js",

5. Try creating a file named index.js with contents console.log("Hello, world!");

6. Save and then in the terminal run: npm start

Adding a 3rd Party Package with npm
1. Let's add the popular library chalk to our project! This library makes it simple to use color coding in

terminal program output!

2. Run the command: npm install --save chalk

1. The --save long argument saves the dependency in package.json (go look!)

2. Notice in dependencies, you see: "chalk": "^5.3.0"

3. This also leads to a file named package-lock.json being created with more concrete details about the
exact package(s) installed (and their dependencies!).

4. Both of these files tend to be committed to project repositories.

3. Now you can use the chalk library, update your index.js

import chalk from 'chalk';

console.log(chalk.yellowBright("Hello, world"));

4. Do you remember how to run your program?

