
Kris Jordan / August 26, 2024 / COMP423 / Class 03

Type Inference and Async Programming

Please seat at tables with at least 3 people, ideally 4!
Only use Zones ABC. No DEF!

Structural Typing
As opposed to reified, nominal typing, the shape of values determines valid uses.

• Functions can conform to function type interfaces without declaring they do!

• Contrast this with Java's class/implements relationship: just defining the methods of an interface is
not enough, a class must also state it implements an interface in order to be used where the interface is
expected.

• This is very powerful for enabling common usage scenarios in TypeScript that
exploit anonymous functions.

• As seen on the previous slide!

• An interface specifies the shape of a value and any value that conforms to
that shape is automatically considered to be an implementation of the interface.

Type Inference
TypeScript can use context to infer types without explicit declarations.

• What is the type of x in the following statement: 
let x = "hello, world"; 

• What is the return type of the following function: 
let f = (x: number) => { return x * 2; }

Type Inference (2/2)
Consider the following function type interface and function signature:

• In the bolded anonymous arrow function, given the above definitions, what is
`x`'s type and what is the arrow function definition's return type? 
 
map(["A","B","C"], (x) => { return parseInt(x, 16); });

interface Transform {
 (num: string): number;
}

function map(xs: string[], f: Transform): number[] { /** Elided */ }

interface Predicate {
 (num: number): boolean;
}

function filter(xs: number[], test: Predicate) {
 let result: number[] = [];
 for (let x of xs) {
 if (test(x)) {
 result.push(x);
 }
 }
 return result;
}

console.log(
 filter(
 [1, -2, 3, -4, 5],
 (x: number): boolean => {
 return x < 0;
 }
)
);

interface Predicate {
 (num: number): boolean;
}

function filter(xs: number[], test: Predicate) {
 let result: number[] = [];
 for (let x of xs) {
 if (test(x)) {
 result.push(x);
 }
 }
 return result;
}

console.log(
 filter(
 [1, -2, 3, -4, 5],
 (x) => {
 return x < 0;
 }
)
);

The Right-hand Example is Idiomatic Thanks to Inference

A note on syntactical sugar...
• TypeScript (and JavaScript) offer syntactical sugar for writing arrow functions

definitions more concisely. Consider this arrow function: 
 
const t: Transform = (x: string): int => { return parseInt(x, 16); } 

• If TypeScript has context to infer types, you can omit param and return types: 
 
const t: Transform = (x) => { return parseInt(x, 16); }

• When the body of an arrow function contains only one statement, and it is a
return statement, then you can omit the curly braces and return keyword: 
 
const t: Transform = (x) => parseInt(x, 16);

• When an arrow function has only one parameter and you do not need to
specify its type, you can omit the parameter list's parentheses. 
 
const t: Transform = x => parseInt(x, 16);

We recommend
this syntax as you

write your first
TS/JS programs.

Software Engineering Lessons in TypeScript
• Better tools, better teams!

• Adding static type annotations to the JavaScript language, alongside tools for checking,
compiling, and niceties in IDEs like VSCode, the TypeScript language enabled software
engineering teams to collaborate on large code bases more confidently and productively.

• Better automated verification, better user experiences!

• 2017 study out of University College London and Microsoft Research found 15% of
JavaScript bugs that made it to production systems would have been found at compile
time if using TypeScript, or equivalent*

• Layered system design can add stronger properties above more primitive layers

• TypeScript is a superset of JavaScript! (All programming languages ultimately transform down
to machine code... most add semantic properties stronger than assembly's ability to.)

• Before building a new system ask: can we build a new layer on an existing system instead?

* https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/gao2017javascript.pdf

Runtime Models
• Single Thread Blocking Sequential Model - Each operation "blocks" progress

in the thread of execution until it completes.

• This is the runtime model you are most comfortable with and currently your
default mental model.

• Multithreaded Model- Expensive operations, in terms of time complexity, are
moved to separate threads, as you saw in 301. Each Thread is blocking/
sequential and maintains its own call stack, but they share the same heap.
Synchronization and memory safety is a real challenge, as you saw in 301!

• Asynchronous Event Model - Expensive operations are added to background
queues that do not block execution in the main thread. These backgrounded
tasks register callback functions that are called sometime after the operation
completes

Example Async Function: setTimeout
• Schedules a callback function to run after a specified delay in milliseconds.

• After the delay has passed, the callback function is called.

• setTimeout is a non-blocking function! 

interface TimeoutCallback {
 (): void;
}

const setTimeout = (cb: TimeoutCallback, ms: number) => {
 /** Implementation elided. */
};

// Example Usage: Print "Hello!" 1 second from now...

setTimeout(() => { console.log("Hello!"); }, 1000);

What is the printed output?
Form pairs (or trios at tables of 3) and whiteboard...

const one = (): void => {
 console.log(`T-1 seconds`);
 setTimeout(zero, 1000);
};

const zero = (): void => {
 console.log(`T-0 seconds`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Async Event Loop
Pseudo-code Intuition

while (true) {
 // 1. Check for tasks to run
 if (taskQueue is not empty) {
 // 2. Run the next task
 task = taskQueue.dequeue();
 execute(task);
 }

 // 3. Check for timed tasks (e.g., setTimeout)
 if (any timed tasks are ready) {
 // 4. Move ready tasks to the task queue
 taskQueue.enqueue(ready tasks);
 }

 // 5. Wait briefly if nothing to do
 if (taskQueue is empty and no events) {
 sleep(very_briefly);
 }
}

• The JavaScript run-time's main
thread has event loop logic like
the code to the right:

• Your program's initial execution
as the first "task" that's added
to the "Task Queue"

• When async operations are
encountered, they are handled
by a background system until
completed ("ready" for further
processing).

• Completed/Ready operation
callback "tasks" are added to
the task queue.

Globals

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

Associate one with function
object on heap.

one id:0 id:0 - fn lines 1-3

Current Time: 5:00:00pm

Globals

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

Output sent to stdout...

one id:0 id:0 - fn lines 1-3 Launch in...

Current Time: 5:00:00pm

Globals

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

Timer established in Timer
Management System

one id:0 id:0 - fn lines 1-3 Launch in...

At 5:00:01pm call function id:0

Current Time: 5:00:00pm

Globals

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

Output sent to stdout...

one id:0 id:0 - fn lines 1-3 Launch in...

At 5:00:01pm call function id:0

Current Time: 5:00:00pm

BOOM!

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

Our program's code
evaluation has completed and

the frame of the call stack
goes away!

id:0 - fn lines 1-3 Launch in...

At 5:00:01pm call function id:0

Current Time: 5:00:00pm

BOOM!
Notice, though, our function

definition lives on because it's
still referenced by a Timer

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

id:0 - fn lines 1-3 Launch in...

At 5:00:01pm call function id:0

Current Time: 5:00:01pm

BOOM!

Our program was "sleeping" for one
second, but now we imagine the time

is one second later....

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

id:0 - fn lines 1-3 Launch in...

At 5:00:01pm call function id:0

Current Time: 5:00:01pm

BOOM!

This timer is READY to run, so it
adds a task to the queue...

Call function id:0()

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

id:0 - fn lines 1-3 Launch in...

Current Time: 5:00:01pm

BOOM!

The Runtime Model's event loop
will check this queue and see that

it is not empty...

Call function id:0()

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

id:0 - fn lines 1-3 Launch in...

Current Time: 5:00:01pm

BOOM!The Task's callback is processed by
adding a frame to the stack and

jumping into the function definition.

one

Call Stack Heap

Event/Task Queue Timer Management Subsystem

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Output

id:0 - fn lines 1-3 Launch in...

Current Time: 5:00:01pm

BOOM!This line of code is evaluated and
output is logged to stdout.

one

T-1

const one = (): void => {
 console.log(`T-1`);
};

console.log("Launch in...");
setTimeout(one, 1000);
console.log("BOOM!");

Call Stack Heap

Event/Task Queue Timer Management Subsystem

Output

id:0 - fn lines 1-3 Launch in...

Current Time: 5:00:01pm

BOOM!
The end of the void function is

reached, so it returns. This leaves
the stack empty and no outstanding

tasks so the program exits.

T-1

What is the printed output?
const countdown = (start: number): void => {
 console.log(`T-${start} seconds`);
 if (start > 0) {
 setTimeout(

() => {
countdown(start - 1)

},
1000

);
 }
};

console.log("Launch in...");
countdown(1);
console.log("BOOM!");

Promise-based Model
Promises offer a more modern, object-based take on async callbacks

• Most modern JavaScript/TypeScript non-blocking asynchronous functions
return Promise objects rather than expect callbacks directly

• Promises offer looser coupling and composability versus primitive async
callback APIs like setTimeout

• As you read, you can use the `.then` method to register a callback function
with a Promise object.

• Let's try using `fetch`, which carries out the "expensive"/slow operation of
going out to the internet and downloading a resource. Fetch returns a
Promise object.

In a `node` REPL in the DevContainer Terminal:
let request = fetch("http://worldtimeapi.org/api/timezone/America/New_York");

let json = request.then((response) => { return response.json(); });

json.then((data) => { console.log(data) });

request is a Promise that represents the async execution of an API request

When the request promise resolves, response represents metadata about the HTTP request/response. 

json is a Promise that represents async execution of downloading the body (data) of the API request

Finally, we can log the data out which contains the data about the current date and time.

Contrast with async/await
const main = async (): Promise<void> => {
 const response = await fetch("http://worldtimeapi.org/api/timezone/America/New_York");
 const data = await response.json();
 console.log(data);
};

main().then(() => {
 console.log("--- DONE ---");
});

Functions marked async can use the await keyword to asynchronously "await" the
result of Promises. This gives the ergonomics of writing synchronous blocking code
but results in asynchronous, sequential semantics. We will dive more into this Friday!

