
Kris Jordan / September 4, 2024 / COMP423 / Class 06

Diagram Practice and Unit Testing 101

Have out Paper and Pencil or an iPad/Tablet+Stylus - Laptops placed
away! Bags under seats!

Only use Zones ABC. No DEF!

Diagram the following code listing
Assume that new Date().toISOString() returns a
string like "2024-09-04T16:28:04.818Z"

ISO Date: 2024-09-04T16:28:04.818Z

Compare functional versus object-oriented approaches
For each approach, write
example usage code that
"constructs" a logger and
logs "Hello, world". Assume
a log level of "INFO".

Verification is inherent to Engineering
Testing well results in more reliable, more maintainable products.

• In Software Engineering, there are many testing and verification strategies

• Each has trade-offs and generally a diverse testing strategy is encouraged

• Unit Testing - Test individual units of code in isolation

• Integration Testing - Test multiple units of code integrating with one another

• Functional Testing - Verifies software functionality meets expectations

• End-to-End Testing - Tests complete flows of application across whole stack

• Other kinds of tests: performance, security, acceptance, exploratory,
compatibility, mutation, chaos, recovery, and more...

Unit Testing
Testing "Unit" of Code in Isolation

• Unit Testing emphasizes isolating the code "under test" to single "units",
typically individual functions, methods, and single classes

• Generally used in Early Stages of Development, especially initial
implementation

• Test-Driven ("Test-first") Development pairs nicely with unit tests:

• Write a test for the behavior you want first, with a test that fails

• Then go correctly implement the unit under test to pass the test

• Repeat until fully implemented

• Isolating a unit under test can be a real chore for functions with dependencies

Imagine unit testing logger.
What dependencies does it have?

How do you isolate dependencies in unit tests?
The Dark Arts of Mocks, Fakes, and Stubs

• Lots of isolation strategies and best practices are often language specific

• One upside in dynamic languages like JavaScript/Python/Ruby is that testing
frameworks can easily exploit the ability to hot swap implementations of
objects, methods, functions, and so on, at run time

• General idea:

1. Before a test runs, swap out dependencies with instrumented "fakes"

2. During a test, use instrumentation to confirm expected behavior

3. After a test runs, swap back in the real dependencies / undo mutation

Case Study: jest Spying and Mocking
jest is a JavaScript/TypeScript testing framework from Facebook/Meta

• The syntax of jest tests leverages arrow functions for simple readability:

describe('logger function', () => {

 it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

 // Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // TODO: Verify expected... but how?!?

 });

});

Spying on and mocking in jest
• Establishing a spy in jest instruments a function/method so that you can test

whether the function/method was called, what arguments it was called with,
and so on. Spying alone does not alter behavior!

• When tests need spying capabilities, you need a variable to refer to the spy.

• Establishing a mock in jest replaces a function/method's implementation with
mocked implementation. The mocked implementation typically either does
nothing or returns an expected value.

• This is very handy for functions that involve slow input/output side-effects
like saving files to storage or loading data from the network.

• These two concepts can be combined! You can spy on a method and mock it.

Spying and Mocking console.log
describe('logger function', () => {

 let logSpy: jest.SpyInstance;

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${new Date().toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

});

Spying and Mocking console.log
describe('logger function', () => {

 let logSpy: jest.SpyInstance;

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${new Date().toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

});

Handle on the spy. Establish spy and mock

before each test is run.

Restores all mocks after

each test completes.

The `expect` fu
nction in jest is like a fluent

assertion. On a spy, you can test usage.

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${new Date().toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

}); Every so often this test fails. Why???

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${new Date().toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

});

Imagine for some reason your Operating System interrupts

node.js right at this point, after calling `logFunction`...

Spying and Mocking Datedescribe('logger function', () => {

 let logSpy: jest.SpyInstance;

 const mockDate = new Date('2024-09-04T12:00:00.000Z');

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 jest.spyOn(global, "Date").mockImplementation(() => mockDate);

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${mockDate.toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

});

Notice we are replacing the Date()

implementation with a single mock date

object.

This way we can test against the same

string independent of tim
ing concerns.

describe('logger function', () => {

 let logSpy: jest.SpyInstance;

 const mockDate = new Date('2024-09-04T12:00:00.000Z');

 beforeEach(() => {

 logSpy = jest.spyOn(console, 'log').mockImplementation(() => {});

 jest.spyOn(global, "Date").mockImplementation(() => mockDate);

 });

 afterEach(() => { jest.restoreAllMocks(); });

it('should log the correct message with the given level', () => {

 const level = 'INFO';

 const message = 'This is a log message';

// Unit under test:

 const logFunction = logger(level);

 logFunction(message);

 // Verify expected output

const expectedLog = `${mockDate.toISOString()} [${level}] ${message}`;

expect(logSpy).toHaveBeenCalledWith(expectedLog);

 });

});

Closing question: what language feature
enables this arrow function (in it), to read

and access mockDate and logSpy?

