
COMP423 / Fall 2024 / Lecture 12

Metaprogramming with
Decorators and @Annotations

Keep Sitting with YOUR PARTNER at your Assigned Tables!

Warm-up: What is the output?

Metaprogramming 101
Code that operates on other code!
• With meta programming, you can write code that treats other code in the program as data it can

operate on.

• Used in modern languages and frameworks to register functionality (e.g. @Components, @Injectable Services in
Angular), to register test constructs (@pytest.fixture), to register routes in FastAPI (@app.get), add behavior niceties
(@DataClass), and more!

• For common, "cross-cutting" concerns (e.g. Logging, Registering a Class w/ a Framework) it
allows you to "decorate" existing classes/methods/functions and add capabilities without
reimplementing or modifying their implementation.

• This reduces a significant amount of "boilerplate" code that would otherwise be required to achieve the same result.

• This concept is closely related to a pattern called Aspect-Oriented Programming (AOP)

• Not just in dynamic language runtimes. (Although, they are handled more elegantly.)

• For example, in Java you can use functionality in the java.lang.reflect package for metaprogramming

• Open https://www.typescriptlang.org/

• Delete the example program already in the code

• Pop open the right hand side drawer (click the arrow) and go to Logs

• Open TS Config and go down to Language and Environment

• Enable the Experimental Decorators Feature

• Run the code below and investigate the output in the dev tools console

function Logger(target: any, propertyKey: string, descriptor: PropertyDescriptor) {

 console.log(target, propertyKey, descriptor);

}

class Ops {

 @Logger

 add(a: number, b: number): number {

 return a + b;

 }

}

console.log("TODO...");

Exercise:

Look at the output you are seeing
in console and then try to explain
in English, step-by-step, how the

code listing evaluates in the
language runtime.

Write down the order of steps on
your whiteboard.

https://www.typescriptlang.org/

Let's Implement a method Logger Annotation!
function Logger(target: any, propertyKey: string, descriptor: PropertyDescriptor) {

 console.log(`Logger Decorating ${propertyKey}`);

 const originalMethod = descriptor.value;

 descriptor.value = function (...args: any[]) {

 console.log(`args: ${JSON.stringify(args)}`);

 const rv = originalMethod.call(this, ...args);

 console.log(`rv: ${rv}`);

 return rv;

 };

 return descriptor;

}

... after the class definition, try instantiating a new Ops object and calling its add method!

@Injectable

