
Kris Jordan / The University of North Carolina at Chapel Hill

HTTP
Hypertext Transfer Protocol
COMP423 / 2024 Fall / CL13

Next Quiz: Wednesday 10/2

HTTP Client
Web Browser

cURL
HTTP Client Libraries

and more…

HTTP Server
Web Servers

Application Servers
Reverse Proxies

and more…

How does your client-side application interact
with the server-side out on the internet?

????

Your Machine The Internet

HTTP Client HTTP Server

HTTP Protocol (Simplified)

Your Machine The Internet

Request

Response

Browser /
HTTP Library HTTP Server

HTTP Protocol

Your Machine The Internet

Request

Response

Client-side
Application

Code

Server-side
Application

Code

Scavenger Hunt
On a team board…

1. What are 4 Common Verbs or METHODS used in the HTTP protocol? 
 
 
 

2. What about Content-type? What is the Accepts header?

An HTTP Request Has

• Request Line

• Method (GET/POST/PUT/DELETE)

• Path

• HTTP Version (e.g. HTTP/1.1)

• Headers

• Key-Value string pairs delimited by

“:”s and separated by new lines

• Body

• If the request is giving content to

the server (such as a form
submission, application “post” or
“save”)

POST /tweet HTTP/1.1

Host: api.twitter.com
Content-Type: application/json

Accept: application/json
Authorization: <JWT_TOKEN>

{“message”:“Hello, World”}

A brief story about accepts headers…

Scavenger Hunt
On a team board, respond
Submit to Gradescope as group of up to 4x
1. What is the meaning of 200-level HTTP response codes? Find 2 examples.

2. What is the meaning of 300-level HTTP response codes? Find 2 examples.

3. What are the meanings of 400-level HTTP response codes?  
500-level? Find 1 example in each range.

An HTTP Response Has

• Status Line

• HTTP Version

• Status Code (e.g. 200, 404, 500)

• Reason Phrase (e.g. Ok, Not Found,

Internal Server Error)

• Headers

• Just like a request, key-value pairs

delimited by ‘:’s and separated by new
lines

• Response Body

• Optional, but more common than in the

client. For example, when a web page is
requested its HTML comprises the
response body.

HTTP/1.1 404 Not Found

Host: api.twitter.com
Content-Type: text/html

<!doctype html>
<html>
 <head>  
 <title>Page Not Found</title>  
 ...

HTTP Client
Library HTTP Server

HTTP Protocol for Full-stack Apps
Your Machine The Internet

Client
App Code

Server App
Code

1

Request
3

4 5

Response
7

8

1. Your app code calls out to HTTP Client
Library module. Subscribes for notification
of result.

2. HTTP Client Library transforms your
request to valid HTTP protocol message,
handles connection to server, sends
request.

3. HTTP Server receives request, parses it,
dispatches out to your server application
code.

4. Your server application receives a function/
method call with relevant data from request.

5. Your application logic handles request and
returns info relevant to response.

6. HTTP server transforms response into valid
HTTP response, sends it back to client.

7. HTTP Client Library parses HTTP response
and notifies the subscribed client code.

8. Your client can handles the subscription
notification of response from the server.

2

6

HTTP Client
Library HTTP Server

Client
App Code

Server App
Code1

Request
3

4 5

Response
7

8

6

2

HTTP Protocol for Full-stack Apps

Your
Responsibilities

as a Full-stack
Developer

Notice on the client-side the request invocation and response handling are asynchronous!

This enables your application to do other things, or not block,while waiting on the server to
process a request which can take an undetermined amount of time.

This is where we are now
focusing in this unit on front-

end client development!

This is where we will go in the
next unit on backend-end API

development!

Using Angular's HttpClient
• HttpClient can be used in Services via Dependency Injection:

• constructor(private http: HttpClient)

• It has generic methods for common HTTP Request Verbs, e.g.:

• http.get<Profile>('/api/profile')

• http.put<Profile>('/api/profile', updatedProfile)

• Like axios from EX01, these requests are asynchronous. Unlike axios, these
methods return lazy, reactive observables. Their asynchronous handling is slightly
different and cannot be awaited:

http.get<Profile>('/api/profile').subscribe({
 next: (profile) => /* Do something with profile */,
 error: (err) => /* Handle HTTP error... */
});

